This is Part 1 of an introductory series on game programming using the Microsoft .NET Framework and managed DirectX 9.0. WARNING: Managed DirectX is no longer supported. If you want to do 3D graphics with the .NET Framework, please use XNA (http://creators.xna.com) |
|
Difficulty: Intermediate
Time Required:
1-3 hours
Cost: Free
Hardware: None
Part I – Introduction
|
In this series, we are going to build a simple game to illustrate the various components of a commercial game. We will cover how to create great looking graphics in 3D, how to handle user input, how to add sound to a game, how to create computer opponents using Artificial Intelligence, and how to model real-world physics. In addition we are going to cover how to make your game playable over the network and how to optimize your game for performance. Along the way, I will show you how to apply principles of object-oriented development and, as well, I will share some of my experience in creating well-organized and elegant code.
Tools:
Before we start writing our first game we need to talk about the tools we will use.The most important tool for any developer is the Integrated Development Environment (IDE). This is where you are going to spend the majority of your time writing and debugging code, so it needs be powerful and fast.
Visual Studio 2005 (also known by the codename “Whidbey") is the third version of the standard Microsoft IDE for .NET Framework-based applications. Visual Studio 2005 introduces a number of Express versions that provide most of the functionality of their more advanced counterparts but are simplified for the novice, hobbyist, and student developer and cost much less (There are express versions available for VB, C#, C++, J# and for Web Developers using ASP.NET). For this series, I am going to use both Visual C# Express and Visual Basic Express. If you have not already done so, download the C# or Visual Basic Visual Studio Express IDE at: http://msdn.microsoft.com/express.
The second important tool we need to create a great looking game is a graphics Application Programming Interface (API). Without such an API it would be extremely difficult to access the graphics capabilities of your PC. The API we are going use is the DirectX API. This API allows us to create powerful multimedia applications on the Windows platform. To work on the game, you will need to download the latest DirectX SDK at: http://www.microsoft.com/windows/directx/default.aspx. Make sure that you download the SDK and not just the runtime. The SDK includes samples and other utilities that are extremely useful when developing using DirectX.
At some point in your game development experience you are going to have to create or modify graphics. Every copy of Microsoft Windows comes with Microsoft Paint, and while it is not the most powerful program, you already own it and it is good enough for most of our needs.
As we dive deeper into DirectX and cover 3D models and sounds, you might find the need to use other programs to manipulate the image or sound files. As we cover these topics I will point you towards free or inexpensive programs and resources on the Web.
Finally, you need to know where to go to get help. One of the best places is the public newsgroups. Here, you can ask questions and get answers from people with the same interests as you. Microsoft MVPs and employees also monitor these newsgroups and provide help for you along the way. The newsgroups that are going to be of most interest for game programming are:
- Managed DirectX: microsoft.public.win32.programmer.directx.managed
- C#: microsoft.dotnet.languages.csharp
- VB: microsoft.dotnet.languages.vb
- The ZBuffer: http://www.thezbuffer.com/
- GameDev.net: http://www.gamedev.net/
- flipCode: http://www.flipcode.com/
- Gamasutra: http://www.gamasutra.com/ [Professional audience, but many articles from Game Developer, including tutorials]
What makes a successful game?
My first experience using a computer was in 1981 on a Sinclair ZX Spectrum. The first 5 years of my computing life were spent on nothing but writing and modifying games for the Sinclair and later the Commodore 64, but, heck, what else are you going to do as a teenager? While much has changed in terms of hardware capabilities and available APIs, the properties of a great game have not.Games today have become so complex that they require large numbers of developers, graphic artists, testers and managerial overhead to develop. They rival large commercial enterprise application in their complexity and cost many millions of dollars to develop and market. The payback, however, can be enormous and rival Hollywood blockbuster movies in sales – Halo 2 grossed $100M in its first day of availability.
All successful games have a couple of features in common that made them stand out.
- The main ingredient for a successful game is the game idea. Regardless how cool your graphics are, how good the music is, if the idea is lame no one is going to play the game.
- The second most important feature is the playability of the game. If the game is too hard then players are quickly going to get frustrated and stop playing. Conversely, if the game play is too easy then the player is going to get bored and stop playing. A good game provides multiple levels of difficulty that continuously challenge the player without overwhelming or boring them.
- Together, the game idea and its playability are the “game design” (not to be confused with “level design,” which is the application of the overall game design to specific segments of the game). There are certain game designers who have a golden touch. Shigeru Miyamoto (the creator of Donkey Kong, Zelda, and Mario) and Will Wright (Sim-everything) are two prominent examples. Miyamoto’s keynote address to the 1999 Game Developer’s Conference is available at http://www.gamasutra.com/features/20030502/miyamoto_01.shtml and Wright’s recent discussion of the design philosophy of Spore (http://www.gamespy.com/articles/595/595975p1.html?fromint=1) are good inspirations for designers of all stripes, while the book “Theory of Fun for Game Design” by Raph Koster has gotten excellent reviews in the community.
- The third ingredient to a successful game is the set of graphics. They need to be good enough to compliment the game idea and game play but not so resource intensive or flashy that they distract from it.
- The final ingredient is performance. No one wants to play a slow game. I still remember an adventure game on my Commodore64 that took 10 minutes to render each scene. I still played it, mind you, because the game idea was great and there were no other options around but it was irritating. Graphics and performance are closely related. The more fancy graphics you add to a game to slower the performance. The next biggest performance issue is the AI. A lot of game development today focuses on how to make things faster and not coming up with new ideas. However, when you’re learning a complex programming technique such as game programming, it’s vitally important not to optimize prematurely. An understanding of the performance pipelines, and the skills to write clean code, profile it, and improve it are much more important than any single optimized function.
Our Game idea:
Now that you know what features make a great game, the next step is to lay out the game proposal for our game.Idea: Since coming up with a unique and creative game idea is the core of any game, I am going to cheat and use the game idea from the first 3D game I ever saw: Atari’s Battlezone. (If I had that great idea why would I let of all you know anyway?) Battlezone is a basic first-person shooter game in which you are looking through the viewfinder of a tank into a 3D landscape. The goal is to destroy as many of the opponent’s tanks as possible before getting destroyed yourself. The landscape includes random objects behind which you can hide. The game screen includes a radar to show you the location of your opponents and the current score.
Playability: The original game started out fairly slowly but kept adding more opponent tanks and other random enemies. The game also increased the speed and intelligence of the opponents. All of this kept the game challenging but playable.
Graphics: The original game used graphics that proved just engaging enough to feel like you were in a 3D world, but because of the hardware available in 1980 (an 8-bit processor running at 1.5 megahertz) it rendered the 3D objects as wire frames. These graphics were advanced when the game first came out, but we are going to improve upon them using the magic of DirectX (and the magic of 25 years of Moore’s Law!).
Screenshot of Atari’s Battlezone game – complete with wire frame mountains, tanks, and even a wire frame moon for added realism!
Performance: This game pushed the limits of the hardware available at the time. This is evident in the use of the wire frame objects. If the game had been written to fill these objects then it would have been unplayable. With today’s advanced hardware we should not have any performance issues other than those introduced by us writing sloppy code.
Now that we have decided on a game, the next step is to write down the goals of your game. This does not need to be anything formal but the simple act of writing things down has the tendency to make ideas clearer. At a minimum you need to determine the object of the game, what the player can and cannot do and how the player interacts with the game. We also should define what the scoring system is going to be like and what are the victory conditions.
For our game these are the simple specification I came up with.
- A 3D first-person shooter game
- The goal is to destroy as many enemies as possible
- The player can move through the landscape on the ground just as a regular tank can. The tank can not fly, nor can it change speed.
- The game play will be controlled through the keyboard for moving and shooting. The mouse will be used to interact with the menus and start/stop the game. We will not support a joystick.
- The player will receive a score that is based on the distance at which the enemy tank was destroyed. The further the tank was, the higher the score. Each round fired reduces the score by a set amount, unless that round hits a target.
- The game will be divided into levels. Each level will have a pre-defined number of enemies. Once all enemies have been eliminated, the player advances to the next level. There is no limit to the levels.
Creating the game Project:
Now we are ready to write some code. The first step is to create a new solution in Visual Studio 2005.- Select File | New | Project and choose Windows Application from the template list. In the Name field at the bottom of the dialog, replace the default WindowsApplication1 with BattleTank2005 and click OK.
First, we need to rename the class to something more descriptive. Naming is one of the most efficient methods of keeping code well organized and understandable. Always choose names that clearly describe what the item is doing and avoid meaningless names like Class1 and Form1.
- From the Edit menu, select Find and Replace, then select Quick Replace. Set the Find What field to 'Form1', Replace What field to 'GameEngine' and the Look in field to 'Current Project' (see Figure below). Click Replace All to make this change (there should be five changes made)
- Next right-click Form1 in the Solution Explorer and select Rename. Change Form1.cs to GameEngine.cs.
Another trick to keeping things organized is to ensure that the files in the Solution Explorer are named exactly the same as the classes they contain and to always create a separate file for each distinct element such as each class or enumeration.
Now we have a Windows application that we can run, but it doesn’t do anything. The form has no other controls on it such as buttons you can click or textboxes to display any information. In a regular Windows Forms application we would now add such controls to the forms to create our final application, but for our game we are going draw everything using the DirectX API rather than the Windows Forms API.
We really only need the Form for its Windows Handle, which is basically its unique name among all the other windows on the screen. We will use this handle to set up our DirectX drawing surface. The other use of the Form is that it contains an event that we are going to use to create our render loop.
Adding the Render loop
A game is much different from a regular application, such as Microsoft Word. Word presents a screen to the user that mimics a page in a typewriter and then waits for the user to do something. This something could be pressing the keys on the keyboard or selecting a menu item from the menu with the mouse. While waiting for the user to interact with the application Word does nothing. (Actually I lie: it does do things like run spell checking and auto save in the background but nothing you as the user can see). Generally, programs written using the Windows Forms library generally have the same behavior – they don’t consume CPU time unless the user is doing something (of course, it’s possible to use the Timer control or the capabilities of the System.Threading namespace to do things independent of the user).Games are different. As you know, smooth movement in games requires the screen to be updated many times per second. The “flicker fusion threshold” at which static images begin to fuse is generally taken to be 1/16 of a second, although it actually varies depending on illumination (brighter lights like computer monitors require higher frame rates) and where on the retina the image falls (peripheral vision requires higher rates than foveal vision). Although movies are shown at 24 frames per second (FPS), 30 FPS is often considered the lowest-acceptable rate for video games, and most actiongame players tune their graphics for no less than 60 FPS.
Because the render loop is called dozens of times per second and runs nonstop, game programming almost always uses the render loop as the “stopwatch” of the game, calculating everything inside the loop, not just graphics, but physics, AI, checking for user input, and scores. (Again, you could use the Timer class or threads to write a multithreaded game, but doing so would introduce significant complexity without any clear benefits and although multithreading in the .NET Framework’s Common Language Runtime is quite efficient, the slight overhead could knock a couple frames per second off your game.)
So how do we get the computer to run this loop? The form we added earlier has an event called the Paint event. The Paint event for a Windows Form object is called whenever the form is redrawn. This normally occurs only when you maximize a form or when a form is covered by another form that is moved.
As all Windows Forms programming, even game programming, is event-based, understanding the principles of events and event handlers is critical. Although the event is triggered automatically, we need to create a special method called an event handler to be able to intercept the event and do something in response to it..
- In the GameEngine class add the following code after the constructor.
protected override void OnPaint(PaintEventArgs e) { }Visual Basic
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs) End SubThis is our event handler. When is it called? “OnPaint” – when the Paint event occurs. One thing is still missing. Even though Windows and the Windows Forms library automatically raise the event, some actions that we might expect to trigger the Paint event don’t. Minimizing a window, for example, does not trigger the Paint event, since Windows does not see the need to repaint the entire form (Windows is just being efficient since we are actually displaying less when we are shrinking the form). So we cannot rely on these automatically-created events to manage the loop we need for our game.
Luckily, we can programmatically trigger the Paint event by calling the Invalidate method of a form. This causes the Paint event to be triggered and Windows to enter back into our OnPaint event handler. Then we execute any code we want to run every frame and start all over again by calling the Invalidate method.
You might ask, “Why can’t we just add a while(true) loop directly within OnPaint() and never leave it?” The answer is that even though we’re game programmers, we’re expected to play well with others. Creating a loop within OnPaint() would starve the rest of the programs running on the system. While our game might gain a few frames per second, the rest of the system would become, at best, ugly, and at worst, unstable. So, instead of directly looping, we essentially “ask” to be called again as soon as possible.
- In the OnPaint method add the following line of code:
this.Invalidate();
Visual BasicMe.Invalidate()
That’s it, we’ve created our render loop. But there is one more problem. It turns out that not
all painting is done in the OnPaint method, Windows Forms
triggers another event when the background is erased and by default
performs some painting (well, erasing) in response. To force our
application to truly only paint inside our method handler,
we need to add one more line of code to our application. Since we need
to ensure that this code is run when the application starts, we place it
into the constructor of the form. This means that we are guaranteed
that this code is run before we call any methods
on that class. - In the GameEngine class add the following line of code to the constructor immediately following the InitializeComponent method call.
this.SetStyle(ControlStyles.AllPaintingInWmPaint | ControlStyles.Opaque, true);Visual Basic
Me.SetStyle(ControlStyles.AllPaintingInWmPaint Or ControlStyles.Opaque, True)Setting the ControlStyles to AllPaintingInWmPaint ensures that Windows only uses the OnPaint event handler to redraw the screen. The second parameter simply informs Windows that our window is not going to be transparent.
Now we have the basic framework for our game. Everything we are going to create from now on out will be actions that occur inside the render loop.
Everything about timers
One issue with this type of loop is that fact that the speed in which the computer can accomplish the tasks in the render loop varies from computer to computer. It even varies on the same computer according to how much memory and CPU time is available for the game at any given moment. We need to have some way of accounting for these differences to make sure that we animate consistently. So instead of treating each frame the same, we are going to calculate the time elapsed between frames and apply that value to our calculations.There are a couple of different ways of keeping track of time in Windows:
- System.Windows.Forms.Timer: This is the most common timer used in Windows programming. While it is easy to use, it only has a resolution of 1/18th of a second. Since we could have up to a thousand frames per second this resolution is not good enough for a game program.
- timeGetTime: This Windows DLL provides a resolution of 1 microsecond on some versions of Windows and 5 microseconds on Windows NT. This is too variable, and we really don’t want to check the operating system our game is running on to see if we need to adjust the timer values.
- System.TickCount: This managed call returns the number of ticks that indicate the number of milliseconds. This is close to what we want, but we can do better.
- QueryPerformanceCounter: This is the preferred timer to use; it has a resolution of less than 1 microsecond. This is the timer most often used in game development.
Before we add dxmutmisc.cs we are going to create a separate folder. Organizing a solution by folders makes it easy to group related items together and keeps the project more organized.
- Selecting Add | New Folder. Name the new folder: DirectXSupport. This is where we are going to add the various support classes as we make use of them throughout this project.
- Right-click the DirectXSupport folder and select Add | Add Existing Item and browse to C:\Program Files\Microsoft DirectX 9.0 SDK (February 2005)\Samples\Managed\Common and select the dxmutmisc.cs file.
Since the timer class is contained in a different namespace we are going to add a
using
statement so we can use the FrameworkTimer without
having to write
“Microsoft.Samples.DirectX.UtilityToolkit.FrameworkTimer” every time.
- At the top of the class in the using directives region add the following line of code:
Microsoft.Samples.DirectX.UtilityToolkit;Visual Basic
Microsoft.Samples.DirectX.UtilityToolkitNext we need to have a way to store the value of the time elapsed. We are going to store this value in the deltaTime variable. Notice that we are declaring this variable as a double. If you declared it as an integer you would lose all of the resolution provided by our high-powered timer since everything would be rounded to an integer.
- At the end of the class above the last two braces add the following line of code.
private double deltaTime;Visual Basic
Private deltaTime As DoubleWe want to start the timer at the last possible moment in the render loop so we can get the most accurate time possible.
- At the end of the OnPaint method right before the this.Invalidate call add the following code.
FrameworkTimer.Start();Visual Basic
Microsoft.Samples.DirectX.UtilityToolkit.FrameworkTimer.Start()We need to calculate the elapsed (or delta) time at the start of each loop, because we are going to pass it to most of the subsequent calls we are going to make.
- At the very top of the OnPaint method, before any other code, add the following line of code.
deltaTime = FrameworkTimer.GetElapsedTime();Visual Basic
deltaTime = Microsoft.Samples.DirectX.UtilityToolkit.FrameworkTimer.GetElapsedTime()That’s it. We now have a way to track time. As an added bonus, in the next article, we will use this timer to compute our frame rate. You will notice that the solution now will no longer build. This is because the classes in the file we added require DirectX to be referenced. We are going to cover which parts of DirectX we need in the next article.
Summary
We have accomplished a lot in this first article. First, we covered the tools needed to created managed DirectX games and then we discussed the features that make a great game. Next, we defined our game idea and created our game project. After that, we created the render loop we are going to use throughout the game, and finally we added a high resolution timer to our project.The next steps all require DirectX, which we will cover in the next article. I hope that this initial article has motivated you to begin that game you always thought about. Game development can be one of the most satisfying experiences in computer programming, and as we progress through this series, I am going to teach you all the fundamentals you need to accomplish that goal.